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Abstract  We consider & Markovian model proposed by Gyllenberg and Silvestrov {5] for studying the behaviour of
a metapopulation: a population that occupies several geographically separated habitat patches. Although the individual
patches may become empty through extinction of local populations, they can be recolonized through migration from other
patches. There is considerable empirical evidence (see for example [3]) which suggests that a balance between migration
and extinction is reached which enables these populations to persist for long periods. The Markovian model predicts
extinction in a finite time. Thus, there has been considerable interest in developing methods which account for the persis-
tence of these populations and which provide an effective means of studying their long-termn behaviour before extinction
occurs. We shall compare and contrast the methods of Gyllenberg and Silvestrov [3, 6] (pseudo-stationary distributions}
and those of Day and Possingham [2], which are based on the classical notion of a quasi-stationary distribution. We
present here a convincing rationale for the latter, using limits of conditional probabilities.

i. INTRODUCTIONM

Suppose that we are using a stochastic process
(X{t), t > 0) ta model a population which might even-
tually become extinct. The state X (%) at time ¢ might be
something as simple as the number in the population, but
it could be more complicated: X (¢} might be a vectorin-
dicating the numbers of various species, or the numbers
occupying various geographical regions. If we are to use
our model 1o explain observed phenomena, to make pre-
dictions, or if, in the first instance, we wish simply to
refine it in order that it might fasthfully capture the be-
haviour of the population, then the very best we can hope
to extract from our model is the complete set of state
probabilities: p, () = Pr(X(t) = ),z € 5.t > G,
where & is the set of states. This can usually be done,
at least in priaciple, by solving a set of difference equa-
tions of differential equations. More ofien than not, an
exact solution cannot be obtained anatytically, and so ei-
ther analytical approximations, computational methods
or asymptotic methods are used. But, for the moment,
let us imagine that we have complete information: 1o be
emphatic, we know p,(t) for every x and t.

Now suppose that we observe the popuiation at an as-
bitrary time v and we see that extinction has not yet oc-
curred, We know nothing more. How can we incorpo-
rate this new information? We should evaluate a condi-
tional state distribution, that is, the state probabilities at
time © conditioned on non-extinction:

me (1) = Pr{X{u) = ol X {u) #0)

_ MPI(U)

T 50

(1
where 0 is the state corresponding to extinction, and C
comprises the remaining states (§ = {0} UC).

Cur purpose here is to use this conditional state distri-
bution ta better understand the metapopulation models
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introduced by Gyllenberg and Silvestrov [3]. If the num-
bers of states is not tog large, as is the case in all the ex-
amples studied in {5}, then m;{Z) can be calculated nu-
merically. We shall compare the conditional state distri-
bution, m(t) = (my(t), * € &), with quasi-stationary
distributions (later called pseudo-stationary distributions
in [6]) introduced by those authors. We shall see that,
as ¢ becomes large, m{f) spproaches a limit m, called
a limiting conditional distribution (traditionally called a
guasi-stationary distribution), and that m 1s the eigen-
vector corresponding to the largest eigenvalue of the
transition matrix restricted to . Thus, when the conver-
gence of m(t) to m is rapid, m provides a simple means
of assessing the long-term behaviour of the metapopula-
tion before extinction occurs. Day and Possingham [2]
have used this approach in analyzing a similar, more re-
fined mode!l. They comment that the quasistationary dis-
tribution and the pseudo-stationary distribution appear
not to correspond. We shail amplify this observation, by
showing that the two ways of analyzing the model can
give rise to opposing conclusions,

2. A STOCHASTIC MODEL FOR METAPOPU-
LATIONS

Suppose that there are n distinct geographical regions,
or paiches, and let X, {t} be 1 or 0 according as patch ¢
is occupied or not at time ¢, where ¢ = 0,1,2,.... Let
X = (X, Xq,...,X,) and suppose that {X (1}, t > 0)
is a {discrete-time) Markov chain taking values in § =
{0, 1}". Its wansition structure is defined as follows,
Define an interaction matrix G = (giy, 1,7 € N),
where A" = {1,2,...,n}, which governs the behaviour
of the paiches over a single time step: g, for j # 4,
is the probability that patch § will not be colonized by
migration from paich i, and ¢; is the probability that,



g

in the absence of immigration, patch ¢ will become ex-
tinct. We shall assume that the interaction probabilities
depend on the distance d;; between patches 7 and j (note
that dy; = 0 and that d;; = d;;) and the area A; of
patch 7 in the following way (see [5]);
gi; =exp(—e " Ay, dije N,

where (> () measures how badly individuals are at mi-
grating. Thus, the larger the area of a given patch, the
more likely that patch is to survive and to successfully
colonize other patches, while the larger the distance be-
tween patches the smaller the chance of colonization be-
tween them. In the extreme case a = 0, colonization
does not depend on the distance between colonies; oth-
erwise, the larger the value of a, the more pronounced is
the effect of distance between patches.

The various colonization processes and focal extine-
tien processes are assumed to be independent. Hence,

we can define g;{z}, where 2 = (z1,za,...,2,), by
ui) =[las  jeN zes,

i=1

t0 be the probability that patch § will become extinct at
the next epoch given a present configuration . Thus it is
clear not only that the model accounts for spatial struc-
ture in the population but also that the local extinction
probability may depend on the effect of migration.
Finally, the transition matrix P = {p{z,y), z,y € S)
can be written as
T
pley) = [lal@)! 50 - q@))®, sy e 8.

1==1

Notice that, since ¢;{0) = 1 for all { € N, state
0 = (0,0,...,0) (corresponding to the extinction of ali
patches) is an absorbing state for the chain:

1, ify=0,

p(0.y) = {O, otherwise.

We shall assume that the remaining states ¢ = {z € § :
z # 0} form an irreducible, aperiodic class {Assump-
tions Al-A3 of [5] guarantee this). We shall also assume
that g;; > 0 forall ¢ € N, so that, locally, every patch
has a positive probability of extinction. This ensures that
p{z,0) > 0 for some z € C, so that the absorbing state
is accessible from all states in (, and hence, since C is
finite, eventual extinction will cccur with probability 1.

A salient feature of this model is that it helps account
for the persistence of metapopulations. Figure | shows a
stmulation of a 5-patch metapopuiation. The number of
occupied patches is plotted against time up {0 extinction
at t = 728. Al paiches have the same area (A4; = 1).
The distance between Patches 2,34 and 5 is the same
{d;; = (.1), while Paich [ is 10 times that distance away
from each of the others (dyj = 1)

Do the conditional state probabitities account for the
observed behaviour? Figure 2 compares the chserved
frequencies for the sample path illustrated in Figure 1,
with the conditional state distribution m,(¢) at ¢ =
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Figure 1: Simulation of a 5-patch metapopulation
with a=7 and initially all patches occupied.

t=5

Figure 2: Comparison between the conditional
state distribution (black) and the simulated pro-
portions of occupied patches (white).

1,2,5 and 10. In each case, the hlack bar is the distriby-
tion of the number of occupied patches evaluated using
mz(t), while the white bar is the proportion of time for
which i patches were occupied (1 = 1,2,...,5) during
the period of the simulation, The conditiona! state dis-
tribution was evaluated using (1) and the iteration

i+ 1) =plt)P, t=01,..., (2)
with p{0) assigning all its mass to the initial state. No-
tice that when ¢ is large the conditional state distribution
is in reasonable agreement with empirical frequencies.
This agreement is not surprising from a theoretical point
of view, for in a sense which can be made very precise,
the set of frequencies is a “good” estimate of the state
distribution for ¢ large. My purpose here is to endorse
ihe reader’s common sense: that using conditional state
probabilities is a sensible approach to modelling the be-
haviour of the population before extinction occurs.



3. LIMITING CONDITIONAL DISTRIBUTIONS

The trend illustrated in Figure 2 has a simple theoretical
explanation. Since C is a finite set, the limit

im my(t) = m. (3
tr o0
exists and defines a proper distribution m = (m;, T €

), called a limiting conditional distribution, and m i
the left eigenvecior of P (P restricied to C) correspond-
ing to the eigenvalue, p;, with maximal modulus. This
is true for any aperiodic Markov chain with a finite tran-
sient class C ; see Darroch and Seneta [1]. Indeed, clas-
sical (Perron-Frobenius) matrix theory guarantees that,
under our assumptions, p; has multiplicity 1, it is real
and strictly less than 1, and, the corresponding left and
right eigenvectors have strictly positive entries.

Figure 3 itlustrates the rapid convergence of (1)
to m, for the 3-patch metapopulation model,  The
corresponding distributions of the number of occupied
paiches are plotted and compared at times t = 2,4,9
and 15.

w
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Figure 3: Comparison between the coaditional
state disiribution {black) and the limiting condi-
tional distribution (white) for the number of occu-
pied patches.

Again since C is finite, we can be precise about the
rate of convergence in (3) by examining the eigenvalue,
po, of Pe with second-largest modulus. This eigenvalue
might not be real, and it might have a muliiplicity, &,
which is greater than |, but, for simplicity, let us suppose
that x = 1, it can be shown (see [11) that

mg{f) = my + (") ast — o0,

where 8 = |ps|/p(< 13, Thus, the smaller [py] is
compared with gy, the faster the convergence of mi.(t)
to .. Further, the expected time ull absorption, 7, s
approximately p1/(1 — pi) and so if, in addition, py 1
close to 1, we should expect m o faithiully describe the
hehaviour of the population before extinction. For the
5-patch metapopuiation model with a = 7, we find that
py = 8.9979, py ~ G.6312 (real with multiplicity 1),
3{= pa/p1) = 0.6325 and T ~ 438
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Before we proceed to examine the notion of a pseudo-
stattonary distribution, we remark that usage of the
term quasi-siationary distribution for limiting condi-
tional distribution is commongpiace. However, in recent
times, this term has been used for any initial distribu-
tion {az, = € () such that the conditional probabil-
ity m(t) does not depend on i mz(t) = a, for all
t > 0, r e C. Bvery limiting conditional distribution is
a quasi-stationary distributien in this sense, but the con-
verse is not true; see for example MNair and Pollett [8],
van Doorn [10)], and van Doorn and Schrijner [11]. The
interchangability of the terms arose perhaps because, for
Markov chains with § irreducible, the stationary distri-
bution and limiting distribution coincide. The problem
of identifying conditions under which a quasi-stationary
distribution is also & Himiting conditional distribution has
been the subject of much recent research; see (7],

4, PSEUDO-STATIONARY DISTRIBUTIONS

If we had assumed that a given patch, say Palch [,
had a zero local extinction probability {g;, = {), that
patch would behave, in an obvious sense, as a mainland.
State 0 would no longer be accessible from all states and
indeed  would decompose into two irreducible classes,
(o and C;, consisting of those states in C which have,
respeciively, 2, = 0 and x; = 1: either the process
would start in £y (the mainland is inhabited) and remain
there, or, start in Cg (the mainland is unizhabited) and
eventuaily enier either Cy or the absorbing state.

The method of Gyllenberg and Silvestrov depends on
being able to identify a “quasi-mainfand”, namely a sin-
gle patch ¢ with g;; small; fake this to be Patch 1. By
considering a sequence of processes indexed by € = gy,
Gyllenberg and Silvesirov were able to invoke the pow-
erful perturbation theory of Markov chains by treating ¢
as a perturhation. It is worth reviewing their results in
some detail.

Let ¢ € (0,1] {now arbitrary) and suppose that our
interaction matrix depends cn ¢ in the {ollowing way:

(e}

g = qij +€diy + cle)ase = 0,

where
gy = lim qlf) and 4;; = lim : (q(f) - q--)
VoY T e VY E

the latter assumed o be non-negative and finite, and, that
Q = {qi;, 1,7 € N) satisfies g1y = 0. (This notation
might cause some confusion; it is important to realize
that Q') is the original interaction matrix, with € cho-
sen appropriately (say € = gi1), and that here () is the
intcraction matrix obtained in the limit as ¢ — 0.) Then,
in an obvious notation,

Pz, y) = ple,y) + eplay) + o(e), o,y € S,

where P = (p'¥(x,y), 2,y € &) is the ransition
matrix corresponding to @'/ and P = (p(z,y}, .y €
&) is the transition mairix corresponding to . It
is worth emphasizing at this stage that, of necessity,
qu) —+ (0, and so the choice ¢ = ¢y; Is a natural one,



and one which Gyllenberg and Silvestrov adopted in ail
their exampies (see Section 7 of [3]).

Next, Gyllenberg and Silvestrov examined the asymp-
totic behaviour of the state probabilities, obtained from
P by letting € ~» 0 and (= ¢.) — oo in such a way
that efe — s, where 0 < & < oco. This is an intrigu-
ing idea. By arguing that the expected lifetime of the
quasi-mainland is of order 1/¢, they were able to study
the process on different time scales: smalier than, larger
than, and of the same order as, the expected lifetime
{these corresponding, respectively, to 5 = 0, § = oq,
and 0 < s < co). They proved that, for z,y € C, the
Hmit

lim Pr(X(t) = y|X(0) = 2)

exists and is given by a mixture of the limiting proba-
bilities w(x, y) for the (ergodic) chain generated by @
and the degenerate distribution d(y, 0) which assigns all
its mass to state 0, the mixing probability being e—*¢,
whete A is a positive constant which is specified in terms
of f{x, ). Gyllenberg and Silvestrov called this mixture
a quasi-stationary distribution; later, in [6], they coined
the term psendo-stationary distribution to distinguish it
from the distributions described in Section 3. Note that
w(y) = w(z,y) is the same forall x € €y, that 7(y) = 0
fory € {0} Uy and strictly positive otherwise, and,
thatforx € Copandy € &y, n{z,y) = h{z,C)nly),
A(x, 1) is the probability that the chain reaches €, start-
ing in .

The most interesting case for the practitioner is s == 0,
where the popuiation is observed before extinction oc-
curs; when £, grows more slowly than the expected life-
time, the limiting state probabilities converge to the dis-
tribution obtained by setting ¢1; = 0. In all the exam-
ples given in [5}, only this case was examined.

The case s == oo gives rise to an obvious conclusion:
that if the population is observed on a time scale with
L. growing more rapidiy than the expected lifetime, then
the limiting distribution would be degenerate.

The most Interesting case from a mathematical point
of view is 0 < s < oo, where the process is observed
on the same lime scale as expected lifetime—though the
author contends that the observer could not possibly dis-
cern this, FHere, the limiting distribution is a genuine
mixture of and 4.

5. A COMPARISON

In this section we shatl compare the twe approaches
to modelting quasi-stationary behaviour in metapopula-
tons.

First let us return to the S-paich mode! studied in
Section 2. Recall that all patches had the same area
(A = 1), Patiches 234 and 5 (“islands™) were a dis-
tance 0.} from one another, while Patch 1 (the quasi-
mainland) was a distance 1 from ecach of the others.
Figure 4 compares the limiting conditional distribution,
the simulated proportions of occupied patches and the
pseudo-stationary distribution. The disparity is marked:
for this example, the two ways of analysing the model
lead 1o quite different predictions. And, as illustrated

810

[+E4 4

o
P
T

Protability
o
&

a2

AN

nl

2 3 t
Number of occupied patches

Figure 4: Comparison between the limiting con-
ditional distribution {black), the simulated pPropor-
tions of occupied patches (grey) and the pseudo-
stationary distribution (white).

in Figure 3, this disparity becomes worse as the time-
scale parameter s increases. The source of the dispar-
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Figure 5: The effect of varying s on the pseudo-
stationary distribution {black). The white bar
represents the simulated proportions of occupied
patches.

ity Is easy to identify. The limiting conditional distri-
bution assigns mass (o all states, whereas the pseudo-
stationary distribution assigns mass to only those states
z with 2y = 1, and, for these states the distributions
arc markedly different. For example, under the limit-
ing conditional distribution, state {1, 0,0, 0, ) has neg-
ligible mass, whereas the pseudo-stationary distribution
assigns nearly half its mass to this state.

To illustrate this graphically, it is simpler to consider
the corresponding 3-patch model. All patches have the
same area, the distance between the islands {Patches 2
and 3) is (L1, and the quasi-mainiand {Patch 1) is 10
times that distance away from cach of 2 and 3. This
is precisely the first example of [5]. Figures 6 and 7
compare the limiting conditional distribution, the simu-



lated proportions of cccupied patches, and the pseudo-
stationary distribution for the 3-patch metapopulation
model with a = 3. Figure 6 shows the distribution of
the number of patches, while Figure 7 shows that ac-
tual state distribution, The white bar in Figure 6 can be
compared with Figure 1{d) of [3]. The disparity is par-
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Figure 6: Comparison between the limiting con-
ditional distribution (black), the simulated pro-
portions of occupied patches (grey) and the
pseudo-stationary distribution (white) for a 3-
paich metapopulation model with ¢ = 3.
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Figure 7. Comparison between the limiting con-
ditiona) distribution (black), the simulated pro-
portions of occupied patches {grey} and the
pseudo-stationary distribution {white} for a 3-
patch metapopulation model with a = 3.

ticuiarly roticible in the state distribution, Observe, in
particular, the unexpectediy high probability assigned to
state (1,0, 0) under the pseudo-stationary distribution.
We remark that for the 3-patch model, repeated runs
are needed to accurately estimale the proportions of oc-
cupied paiches, for extinction occurs quickly (the ex-
pected time tilf exiinction being 7 ~ 12.94 starting, as
we dirl, in state {0, 1, 1}). Our results are based on 10600
3 model we have ;= .9135,

runs. For the a =
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pa == 0.6005 and 8 = 0.6560. The anticipated rapid
convergence of the conditonal state distribution is ob-
served.

&, DISCUSSION

In a recent paper, Gosselin [4] has attempted o reconcile
the two approaches by establishing an iatuitively obvi-
ous result, Denote the state prebabilities corresponding
to P by pll(t) = (p{7 (1), = € 8), so that

p(‘}{t + 1) :p([‘)(t)P(f), =01, .,

and denole the corresponding conditonal probabilities

{

4 . .
by 7y My (ef (1)), Gosselin proved that

Rl

ifz € Cl,
4, ifz € Cq,

e+ i-+00

lim fim mi¥(t) = {

which he compared with Theorem 6.2 of {5]:

7z},
O'l

{These tesults have been stated here in slightly more
generality than in [4] and [5]; they assume, or condi-
tion on, a particular initial state, but since C is a finite
set, we may use an arbitrary initial distriburion, p{0),
over states, in which case the limits do not depend on
p(0}.) Thus, in the important case s = 0, the limitng
conditonal distribution and the pseudo-stationary agree
when ¢ 1 small. The problem with the models examined
above is that ¢(= gy;) = 0.3679, independently of the
number of patches.

However, quasi-stationary behaviour is a property of
the mode! and not the means of analysing it. The 5-patch
model exhibits quasi-stationarity, demonstrated emphat-
ically in Figure 1, vet g1 is not small. The pseudo-
stationary distribution does not capture this behaviour.
On the other hand, the conditional siate distribution
m{t) does: afterall, ii is the most information our model
can provide at any time ¢ given that we know extinction
has not occured by time ¢ In cases when the conver-
gence of m(t} to the limiting conditional distribution m
is rapid, shis distribution can be used instead.

A case for which g11 is small, is the second exam-
ple of [3]. It differs from the 3-patch exampie described
above only in that 4 = (10,5,0.001) and dog = dgy =
1.001, so that the guasi-mainland is well away from the
two islands, a distance 1000 times that between the 13-
lands, and, of the two islands, one is half the size of
the quasi-mairland and 5000 times that of the other is-
land. When a = 7.5 we find that € =~ 0.000045, and
that gy =~ 0.8999, p, o~ 0.9905 and § =~ 0.9906.
Thus, the expected time till extinction is large, while
convergence of the conditonal state distribution is slow,
Figure 8 shows the disiribution of the number of occu-
pied patches. The white bar in Figure 8 can be compared
with Figure 3{c) of [5}.

Ve shall conclude with a brief discussion of compu-
tational issues. There are many numerical software -
braries available which include routines for performing

ifre C},

lim m{(t.) = ifred
0.

e—+0
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Figure 8: Comparison between the limiting con-
dittonal distribution {black), the simulated propor-
tions of occupied paiches (grey) and the pseudo-
stationary distribution (white) for the second 3-
patch metapopulation model with a = 7.5,

malrix computations and, in particular, for evaluating
cigenvalues and eigenvectors. Perhaps the most widely

2n Arnoldi QR Iteration i

4 3543 1182 932 29
8 41966 12610 5768 45
i6 260232 64996 15888 31
32 7407295 527710 59424 29
64 1116134 3554160 245824 30
128 2264917 30466852 983168 30
256 5425752 723682282 3932416 30
512 17161871 - 15729152 30
1024 65372004 - 62915584 30

Table t: Compuarison between various computa-
tional methods.

used is MATLAB. In using this package, we have three
obvious methods available to us. We could use the func-
tion eig. which evaluates all eigenvalues and/or gigen-
vectors using the QR algorithm, or the function eigs
{available in Version 5 or above), which evaluates partic-
ular eigenvalues and/or eigenvectors using the Arnoldi
algorithm, or, we could simply use iteration based on (1)
and (2). We note that the Arnoldi algorithm is normally
used for large-sparse systems (see for example {91, but
can be used in the present context (P is always dense),
though its advantages will not be fully realized. Table |
compares these methods. The size of the system, mea-
sured by the number of states {equivalently, the size of
), 18 given in Column 1. Columns 2.3 and 4 list the
numbers of flops {(Hloating point operations) used by each
method; the iteration was stopped (at £ given in the last
columa) when the maximum elementwise difference be-
tween the state vector and the corresponding result of
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the Arnoldi method was smaller than 107F (this being
also the default tolerance of the Arnoldi method). The
QR algorithm works wetl for small systems, while the
Arnoldi algorithm appears to be better for large systems.
The performance of the simplest method, namely itera-
tion based on (1) and (2), is always the best.
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